public KMeansCommand(int Clusters,KMeansCommandFlags Type,RasterColor[] InCenters)
- (instancetype)initWithClusters:(NSInteger)clusters type:(LTKMeansCommandFlags)type inCenters:(nullable NSArray<LTRasterColor *> *)inCenters NS_DESIGNATED_INITIALIZER; public:KMeansCommand(int Clusters,KMeansCommandFlags Type,array<RasterColor>^ InCenters)
Clusters
Number of output clusters or colors in the output image.
Type
Flag that determines which initializing algorithm to use when choosing the initial centers for the clusters.
InCenters
If the Type is KMeans_UserDefined, InCenters should be a reference to an array of RasterColor values that represents the initial centers.
RasterColor[] InCenters should be null if Type is KMeans_Random or KMeans_Uniform. If Type is KMeans_UserDefined, RasterColor[] InCenters should be filled with the initial centers for the clusters.
using Leadtools;using Leadtools.Codecs;using Leadtools.ImageProcessing.Core;public void KMeansConstructorExample(){RasterCodecs codecs = new RasterCodecs();codecs.ThrowExceptionsOnInvalidImages = true;//Load an imageRasterImage image = codecs.Load(Path.Combine(LEAD_VARS.ImagesDir, "cannon.jpg"));//Prepare the commandKMeansCommand command = new KMeansCommand(7, KMeansCommandFlags.KMeans_Random, null);command.Run(image);}static class LEAD_VARS{public const string ImagesDir = @"C:\LEADTOOLS23\Resources\Images";}
import java.io.File;import java.io.IOException;import org.junit.*;import org.junit.Test;import org.junit.runner.JUnitCore;import org.junit.runner.Result;import org.junit.runner.notification.Failure;import static org.junit.Assert.*;import leadtools.*;import leadtools.codecs.*;import leadtools.imageprocessing.core.*;public void kMeansConstructorExample() {RasterCodecs codecs = new RasterCodecs();codecs.setThrowExceptionsOnInvalidImages(true);// Load an imageString LEAD_VARS_IMAGES_DIR = "C:\\LEADTOOLS23\\Resources\\Images";RasterImage image = codecs.load(combine(LEAD_VARS_IMAGES_DIR, "cannon.jpg"));// Prepare the commandKMeansCommand command = new KMeansCommand(7, KMeansCommandFlags.KMEANS_RANDOM, null);assertTrue(command.getClusters() == 7 && command.getType() == KMeansCommandFlags.KMEANS_RANDOM);command.run(image);codecs.save(image, combine(LEAD_VARS_IMAGES_DIR, "cannonConstructResult.jpg"), RasterImageFormat.JPEG, 24);assertTrue(new File(combine(LEAD_VARS_IMAGES_DIR, "cannonConstructResult.jpg")).exists());System.out.println("Command run and image exported to: " + combine(LEAD_VARS_IMAGES_DIR, "cannonConstructResult.jpg"));}
Help Collections
Raster .NET | C API | C++ Class Library | HTML5 JavaScript
Document .NET | C API | C++ Class Library | HTML5 JavaScript
Medical .NET | C API | C++ Class Library | HTML5 JavaScript
Medical Web Viewer .NET
Multimedia
Direct Show .NET | C API | Filters
Media Foundation .NET | C API | Transforms
Supported Platforms
.NET, Java, Android, and iOS/macOS Assemblies
Imaging, Medical, and Document
C API/C++ Class Libraries
Imaging, Medical, and Document
HTML5 JavaScript Libraries
Imaging, Medical, and Document
